Vorpal 12 RGB LED Light Ring

From Vorpal Robotics
Jump to: navigation, search

The 12 RGB LED Light Ring provides twelve addressable LEDs that can be driven by the FASTLED Arduino library. Each individual LED can be controlled and it's easy to produce effects like chaser, fading between colors, blinking, etc.


Each individual light area actually has three LEDs inside, one each of red, green, and blue. There is also circuitry to interpret a stream of data over a 1-wire protocol which allows 256 brightness levels on each of the red, green, blue elements for all twelve lighted areas.

The circuit is designed to run at 5 volts, which is convenient for Arduino usage.

Maximum power consumption is 20 milliamps per element (red, green, blue), or 60 milliamps per lighted area. Since there are 12 lighted areas, that means maximum power consumption is 12 x 60 = 720 milliamps. This would occur if all elements were at maximum brightness, which would result in twelve bright white lights.

You can reduce power consumption in many different ways, including:

  • Don't run elements at maximum brightness
  • Don't turn on every element at the same time
  • Use pure colors from red, green, blue so only a single element draws power from each lighted area.

NOTE: The Arduino +5V pin and GND can only provide about 100 milliamps of current (this depends on which model of Arduino you're using though, consult specs). This is enough to drive the entire light ring at about 12% brightness, or some subset of LED elements at a higher brightness. But for more than that, you would need an additional regulated power supply for the light ring.


We provide this as just the light ring itself with no connections (which would require soldering), or with a three wire female Dupont connector to make it easier to hook up to an Arduino or other circuit. We also provide a variation on this wiring that splits out the input pin so you can provide power from one source and signal from an Arduino pin.

There is an input port marked GND, 5V and IN. GND and 5V should be hooked to an appropriate power supply that can provide enough current for your use of the light ring.

There is another port with there contacts marked GND, 5V and OUT. This would allow you to daisy chain multiple light rings together and drive them with a single Arduino pin.

Sample Code

The following sample code uses the FASTLED Arduino library which you can find here: Arduino Fastled Library Project Website

#include <FastLED.h>

#define LED_PIN     5
#define NUM_LEDS    12
#define BRIGHTNESS  30
#define LED_TYPE    WS2812B


// This example shows several ways to set up and use 'palettes' of colors
// with FastLED.
// These compact palettes provide an easy way to re-colorize your
// animation on the fly, quickly, easily, and with low overh
// USING palettes is MUCH simpler in practice than in theory, so first just
// run this sketch, and watch the pretty lights as you then read through
// the code.  Although this sketch has eight (or more) different color schemes,
// the entire sketch compiles down to about 6.5K on AVR.
// FastLED provides a few pre-configured color palettes, and makes it
// extremely easy to make up your own color schemes with palettes.
// Some notes on the more abstract 'theory and practice' of
// FastLED compact palettes are at the bottom of this file.

CRGBPalette16 currentPalette;
TBlendType    currentBlending;

extern CRGBPalette16 myRedWhiteBluePalette;
extern const TProgmemPalette16 myRedWhiteBluePalette_p PROGMEM;

void setup() {
    delay( 3000 ); // power-up safety delay
    FastLED.addLeds<LED_TYPE, LED_PIN, COLOR_ORDER>(leds, NUM_LEDS).setCorrection( TypicalLEDStrip );
    FastLED.setBrightness(  BRIGHTNESS );
    currentPalette = RainbowColors_p;
    currentBlending = LINEARBLEND;

void loop()
    static uint8_t startIndex = 0;
    startIndex = startIndex + 1; /* motion speed */
    FillLEDsFromPaletteColors( startIndex);
    FastLED.delay(1000 / UPDATES_PER_SECOND);

void FillLEDsFromPaletteColors( uint8_t colorIndex)
    uint8_t brightness = 255;
    for( int i = 0; i < NUM_LEDS; i++) {
        leds[i] = ColorFromPalette( currentPalette, colorIndex, brightness, currentBlending);
        colorIndex += 3;

// There are several different palettes of colors demonstrated here.
// FastLED provides several 'preset' palettes: RainbowColors_p, RainbowStripeColors_p,
// OceanColors_p, CloudColors_p, LavaColors_p, ForestColors_p, and PartyColors_p.
// Additionally, you can manually define your own color palettes, or you can write
// code that creates color palettes on the fly.  All are shown here.

void ChangePalettePeriodically()
    uint8_t secondHand = (millis() / 1000) % 60;
    static uint8_t lastSecond = 99;
    if( lastSecond != secondHand) {
        lastSecond = secondHand;
        if( secondHand ==  0)  { currentPalette = RainbowColors_p;         currentBlending = LINEARBLEND; }
        if( secondHand == 10)  { currentPalette = RainbowStripeColors_p;   currentBlending = NOBLEND;  }
        if( secondHand == 15)  { currentPalette = RainbowStripeColors_p;   currentBlending = LINEARBLEND; }
        if( secondHand == 20)  { SetupPurpleAndGreenPalette();             currentBlending = LINEARBLEND; }
        if( secondHand == 25)  { SetupTotallyRandomPalette();              currentBlending = LINEARBLEND; }
        if( secondHand == 30)  { SetupBlackAndWhiteStripedPalette();       currentBlending = NOBLEND; }
        if( secondHand == 35)  { SetupBlackAndWhiteStripedPalette();       currentBlending = LINEARBLEND; }
        if( secondHand == 40)  { currentPalette = CloudColors_p;           currentBlending = LINEARBLEND; }
        if( secondHand == 45)  { currentPalette = PartyColors_p;           currentBlending = LINEARBLEND; }
        if( secondHand == 50)  { currentPalette = myRedWhiteBluePalette_p; currentBlending = NOBLEND;  }
        if( secondHand == 55)  { currentPalette = myRedWhiteBluePalette_p; currentBlending = LINEARBLEND; }

// This function fills the palette with totally random colors.
void SetupTotallyRandomPalette()
    for( int i = 0; i < 16; i++) {
        currentPalette[i] = CHSV( random8(), 255, random8());

// This function sets up a palette of black and white stripes,
// using code.  Since the palette is effectively an array of
// sixteen CRGB colors, the various fill_* functions can be used
// to set them up.
void SetupBlackAndWhiteStripedPalette()
    // 'black out' all 16 palette entries...
    fill_solid( currentPalette, 16, CRGB::Black);
    // and set every fourth one to white.
    currentPalette[0] = CRGB::White;
    currentPalette[4] = CRGB::White;
    currentPalette[8] = CRGB::White;
    currentPalette[12] = CRGB::White;

// This function sets up a palette of purple and green stripes.
void SetupPurpleAndGreenPalette()
    CRGB purple = CHSV( HUE_PURPLE, 255, 255);
    CRGB green  = CHSV( HUE_GREEN, 255, 255);
    CRGB black  = CRGB::Black;
    currentPalette = CRGBPalette16(
                                   green,  green,  black,  black,
                                   purple, purple, black,  black,
                                   green,  green,  black,  black,
                                   purple, purple, black,  black );

// This example shows how to set up a static color palette
// which is stored in PROGMEM (flash), which is almost always more
// plentiful than RAM.  A static PROGMEM palette like this
// takes up 64 bytes of flash.
const TProgmemPalette16 myRedWhiteBluePalette_p PROGMEM =
    CRGB::Gray, // 'white' is too bright compared to red and blue

// Additionl notes on FastLED compact palettes:
// Normally, in computer graphics, the palette (or "color lookup table")
// has 256 entries, each containing a specific 24-bit RGB color.  You can then
// index into the color palette using a simple 8-bit (one byte) value.
// A 256-entry color palette takes up 768 bytes of RAM, which on Arduino
// is quite possibly "too many" bytes.
// FastLED does offer traditional 256-element palettes, for setups that
// can afford the 768-byte cost in RAM.
// However, FastLED also offers a compact alternative.  FastLED offers
// palettes that store 16 distinct entries, but can be accessed AS IF
// they actually have 256 entries; this is accomplished by interpolating
// between the 16 explicit entries to create fifteen intermediate palette
// entries between each pair.
// So for example, if you set the first two explicit entries of a compact 
// palette to Green (0,255,0) and Blue (0,0,255), and then retrieved 
// the first sixteen entries from the virtual palette (of 256), you'd get
// Green, followed by a smooth gradient from green-to-blue, and then Blue.